,

Big Data, Internet of Things und die Vernetzung der realen und digitalen Welt

Nachdem der Begriff der künstlichen Intelligenz bereits eingehend erläutert wurde, soll in diesem Artikel deutlich gemacht werden, inwieweit Machine Learning und allgemeiner künstliche Intelligenz in einen größeren Prozess der Vernetzung von digitaler und realer Welt über das Mittel der Maschinendaten eingebunden sind. Dabei wird deutlich, welche entscheidende Bedeutung Big Data und das Internet of Things (IoT) für die weitere wirtschaftliche und gesellschaftliche Entwicklung von Ländern haben wird.

Das Phänomen Big Data

Dank der seit ca. 1950 exponentiell steigenden Rechenkraft von Informationsverarbeitungsanlagen[1] und der gleichzeitig damit einhergehenden Professionalisierung und rapiden Weiterentwicklung der Informationstechnologie ist es heute möglich, Datensätze mit Abermillionen von Einzeldaten in Echtzeit zu verarbeiten und auszuwerten. Dieses Phänomen der ständigen Auswertung von riesigen Datenmengen bezeichnet der Begriff „Big Data“. Das Phänomen Big Data geht einher mit einem exponentiellen Wachstum der weltweiten Datenmenge. Im Jahre 2020 werden jährlich mehr als 40 Zettabyte (bzw. 40 Trillionen Gigabyte) an technisch-verarbeitbaren Daten weltweit erwartet.[2] Dies entspricht einem Anstieg von 236 % in den Jahren 2013-2020. Dabei ist anzunehmen, dass sich in diesen Daten enorme Werte verbergen.[3] Jeden Tag werden ca. 2,5 Milliarden Gigabyte an neuen Daten erzeugt[4], allein Google verarbeitet jeden Tag über 3,5 Milliarden Suchanfragen weltweit[5]. Die Wertschöpfung aus der Analyse solcher Datensätze geschieht dabei im Wege eines sog. „Data Value Cycle“. Zunächst werden in irgendeiner Form Daten erzeugt, die Aufschluss geben über gewisse Eigenschaften, Verhaltensweisen oder Ereignisse. Einzelne Daten werden daraufhin „gepoolt“, also zu riesigen Datensätzen zusammengeschlossen, mit denen dann Data Analytics Tools „gefüttert“ werden. Aufgrund der Auswertung der Analysewerkzeuge werden letztendlich Entscheidungen getroffen, die erneut Daten erzeugen, die wiederum in den Data Value Cycle mit eingehen.[6] Die Speicherung, Sammlung und Verarbeitung von Daten wird zudem heutzutage durch sog. Hadoop-Applikationen massiv erleichtert. Diese Applikationen erlauben es, dass Daten, die auf unterschiedlichen Servern gespeichert sind, dennoch zentralisiert verarbeitet werden können, indem die unterschiedlichen Server mithilfe der Hadoop-Applikationen zu einem  Rechencluster zusammengeschlossen werden (sog. Hadoop Distributed File System, HDFS).[7] Das steigende potenziell verfügbare Datenvolumen steigert gleichzeitig die Effektivität und Reichweite von Big Data. Indem zunehmend in Echtzeit riesige Datenmengen analysiert werden können, werden die gesamte Wissens- und Wertschöpfung in der Gesellschaft vorangetrieben, neue Produkte, Prozesse und Märkte gefördert sowie neue Geschäftsmodelle ermöglicht. Big Data verändert die meisten, wenn nicht sogar alle Sektoren in OECD-Ländern und Partnerländern und steigert damit die wirtschaftliche Wettbewerbsfähigkeit und das Produktivitätswachstum von Volkswirtschaften.[8]

Die “Datafication” der realen Welt

Bis jetzt hat Big Data seine größte wirtschaftliche Bedeutung und Verbreitung (noch) im Bereich der Information & Communication Technologies (ICT).[9] Die „Datafication“, also Digitalisierung von Phänomenen in Binärcode[10], macht aber nicht im Bereich der virtuellen Kommunikation Halt, sondern erfasst immer mehr die „reale Offline-Welt“. Durch Sensoren (deren Einsatz massiv durch die immer weiter sinkenden Produktionskosten gefördert wird), also bspw. durch Kameras, Temperaturmessgeräte, Infrarotmessgeräte oder das gerade im Bereich des automobilen Fahrens sehr relevante LIDAR-System[11], die physikalische Begebenheiten und Ereignisse erfassen, speichern und in digitalisierter Form transferieren, wird die reale Welt in allen ihren Details digitalisiert.[12] Geschätzt werden heutzutage ca. 30 Millionen vernetzte Sensoren eingesetzt, wobei diese Zahl jedes Jahr um ungefähr 30 % steigt.[13] Das von Sensoren erzeugte Datenvolumen wird besonders deutlich, wenn man sich verdeutlicht, dass für das Jahr 2020 allein geschätzt 250 Millionen vernetzte Fahrzeuge erwartet werden (und die Zahl an Smartphones, Smartwatches etc. noch wesentlich höher liegt[14]). Daten, die von Sensoren in Maschinen, also eine bestimmte Funktion erfüllenden technischen Geräten, erzeugt und kommuniziert werden, sollen Maschinendaten genannt werden. Dabei ist der Begriff Maschinendaten auch deshalb so passend, weil er Daten umfasst, die nicht hauptsächlich der direkten Kommunikation unter Menschen dienen, sondern vielmehr auf eine Maschine-zu-Maschine-Kommunikation (M2M-Kommunikation) zugeschnitten sind. Genauso wie das gewöhnliche Internet hauptsächlich dazu dient, Kommunikation zwischen Menschen zu ermöglichen, soll das sog. „Internet of Things“ (IoT) dazu dienen, einzelne Smart Devices zu vernetzen und durch automatischen Informationsaustausch effektivere, bessere Entscheidungen herbeizuführen.[15] Ideales Beispiel ist hier der Straßenverkehr: Durch die wachsende Anzahl an Automobilen in Deutschland, kommt es aufgrund zu starker Fahrbahnauslastung zu immer mehr Staus.[16] Indem jedes einzelne Fahrzeug im Straßenverkehr mit allen anderen Fahrzeugen vernetzt wäre und diese dadurch gegenseitig ihre Position kennen würden, könnte jedes Fahrzeug sich harmonisch auf den derzeitigen Verkehrsfluss einstellen und damit effektiv Stau verhindern.[17]

Big Data umfasst sämtliche Bereiche des gesellschaftlichen Zusammenlebens: Kommunikation, Verkehr[18], Medizin[19], Stadtverwaltung[20], Landwirtschaft[21], Musik[22], aber ganz besonders die Industrie. Unter dem Schlagwort „Industrie 4.0“ wird diskutiert, wie Big Data in Verbindung mit einem spezialisierten “Industrial Internet of Things” gesamte Wertschöpfungsketten und Wirtschaftsmodelle aufbrechen oder zumindest optimieren kann.[23] Durch den Einsatz von auf Fertigungsmaschinen installierten Sensoren, die miteinander vernetzt sind, kann eine weitreichende Analyse und Optimierung der Fertigung gelingen.[24] Ansätze reichen von einer einfachen Verringerung der Fehlerquote bis hin zur „Smart Factory“[25], in der selbstständig Waren nachgeordert und Produktionsabläufe gesteuert werden.

Auch für sog. Smart Contracts bildet das IoT die Grundlage zahlreicher Anwendungsfälle. Smart Contracts bezeichnen automatisch schließbare und ausführbare Verträge, die durch Datenübertragung innerhalb eines Blockchainnetzwerks zu Stande kommen. Smart Contracts ermöglichen unter anderem auch die Verknüpfung von realer Welt und digitalem Blockchainnetzwerk, indem Gegenstände der realen Welt wie bspw. ein Türschloss durch Smart Contracts automatisch gesteuert werden können. Im Rahmen dessen läuft die eigentliche Steuerung der Tür durch Daten ab, die im Blockchainnetzwerk auf bestimmte Art und Weise übertragen und gespeichert werden können, das Blockchainnetzwerk stellt in diesem Fall genau das beschriebene “Internet of Things” dar. Da dieser Artikel nur eine Einleitung in das Thema IoT darstellen soll, verweisen wir schon jetzt auf unseren kommenden Artikel über die genaue Funktionsweise von Smart Contracts. Dieser wird noch deutlicher machen, wie sehr Smart Contracts und IoT als Themenfelder miteinander verbunden sein können.

Maschinendaten und ihre Bedeutung für das Internet of Things

Maschinendaten bilden dabei die Grundlage des IoT. Sie werden für Industrieunternehmen zu einer dritten Größe neben Arbeit und Kapital. Sie sind der Rohstoff, mit dem Unternehmen Wertschöpfung generieren können.[26] Anders als die Analyseergebnisse, die von der Vorauswahl der Daten stark beeinflusst werden, sind die gesammelten Daten selbst zunächst unpolitisch.[27] Ihre Politisierung geschieht mit ihrer Auswahl für einen bestimmten Verwendungszweck.[28] Diese sind sehr vielfältig. Attraktiv sind die riesigen, sich dauerhaft erneuernden Datensätze dabei insbesondere für das Feld des Machine Learning. Dieses zeichnet sich dadurch aus, dass ein Programm nicht wie üblich festgelegte Handlungsschemata abarbeitet, sondern diese im Hinblick auf ein vordefiniertes Ziel selbst entwickelt. Die Entwicklung und Optimierung dieser Handlungs- und Entscheidungsschemata gelingt dabei mithilfe riesiger Datensätze, durch die das Programm „lernt“ (daher auch der Begriff Machine Learning), seine Entscheidungen zu optimieren.[29] 

Maschinendaten sind also gewissermaßen der Kraftstoff, mit dem das IoT betrieben wird. Dadurch kommt ihnen für die zukünftige wirtschaftliche und gesellschaftliche Entwicklung von Ländern und Regionen eine enorme Bedeutung zu. Es wird geschätzt, dass der Big Data-Markt im Jahr 2020 allein in Deutschland 3,8 Mrd. EUR beträgt, weltweit wird für 2019 ein Umsatz von 187 Mrd. USD geschätzt.[30] Der effektive Einsatz von Big Data Tools könnte die Produktentwicklungskosten um bis zu 50 %, die Operationskosten um bis zu 25 % senken und den Nettogewinn damit insgesamt für Industrieunternehmen um bis zu 30 % erhöhen.[31] Volkswirtschaften, die es versäumen, diesen neu hinzugekommenen dritten Kapitalfaktor gewinnbringend einzusetzen, könnten durch aufstrebende „Data Economies“ verdrängt werden.  

Ausblick

Wenn man das Internet of Things schlagwortartig als Vernetzung von digitaler und analoger Welt beschreiben möchte, ergeben sich zahlreiche Fragen. Inwieweit muss die Nutzung und Weitergabe von Maschinendaten reguliert werden? Inwieweit ist sie gemessen an ihrer enormen wirtschaftlichen Bedeutung Stand heute ausreichend geregelt? Inwiefern lässt sich eine Gesellschaft, die durch vernetzte Algorithmen „gesteuert wird“ bzw. zumindest ihr Verhalten anhand dieser Algorithmen ausrichtet, überhaupt durch nationale Gesetze in ihrem Verhalten beeinflussen, gerade angesichts des globalen Spektrums der Datenvernetzung, -nutzung und -speicherung? 

Neben der wirtschaftlichen Bedeutung stellen sich gerade auch Fragen in Bezug auf den Datenschutz und die informationelle Selbstbestimmung des Einzelnen: Wenn das IoT nur durch Big Data funktionieren kann, inwieweit kann der Einzelne realistisch gesehen die Verfügbarkeit von Informationen über sein Verhalten noch steuern?

Gerade die besondere Eigenschaft von Daten, unendlich oft vervielfältigt werden zu können, ohne dass es zu einer Verschlechterung der Nutzung kommt (so genannte Nicht-Rivalität der Nutzung[32]), führt zu einer im Grunde ungebremsten Vervielfältigung und Verbreitung von insb. auch personenbezogenen Daten, durch die potenziell verhaltenssteuernde Algorithmen programmiert werden bzw. aussagekräftige Ergebnisse produzieren können.

Das Internet of Things könnte in Zukunft zusammen mit Big Data also zu einer Veränderung des gesellschaftlichen Zusammenlebens führen und besitzt wirtschaftliche Relevanz für sämtliche Wirtschaftssektoren. Daher ist es unerlässlich, dass sich auch die Rechtswissenschaft vertieft mit diesem Thema auseinandersetzt.

 

Autor: Johannes Kevekordes


[1] Vgl. Routley, Visualizing the Trillion-Fold Increase in Computing Power, 2017 (www.visualcapitalist.com/visualizing-trillion-fold-increase-computing-power/) (geprüft am 07.05.2019).

[2] IDC; DELL EMC, Data Growth, Business Opportunities, and the IT Imperatives – Executive Summary, 2014 (www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm) (geprüft am 07.05.2019).

[3] Picot/Berchtold/Neuburger, in: Kolany-Raiser/Heil/Orwat u.a. (Hrsg.), Big Data und Gesellschaft, 2018, S. 309 (322).

[4] OECD, Data-Driven Innovation (DDI), 2015, S. 20.

[5] Vgl. https://www.internetlivestats.com/google-search-statistics/ (geprüft am 15.05.02019).

[6] Vgl. OECD, DDI, S. 32–33; Kumpf, Smart Cars – eine datenschutzrechtliche Analyse, S. 4.

[7] https://searchdatamanagement.techtarget.com/definition/Hadoop-Distributed-File-System-HDFS (geprüft am 02.05.2019).

[8] Vgl. OECD, DDI, S. 20; Drexl, NZKart 2017 (339).

[9] OECD, DDI, S. 22–25.

[10] Vgl. OECD, DDI, S. 133; Hey, The Data, Information, Knowledge, Wisdom Chain: The Metaphorical link, 2004 (www.dataschemata.com/uploads/7/4/8/7/7487334/dikwchain.pdf), S. 12–13 (geprüft am 07.05.2019); Mayer-Schönberger/Cukier, Big data, 2013, S. 78: To datafy a phenomenon is to put  it in a quantified format so it can be tabulated and analyzed”.

[11] Einen Überblick gibt Mothi Venkatesh auf https://medium.com/playment/a-primer-on-lidar-for-autonomous-vehicles-efa04ab72a94 (geprüft am 15.05.2019)

[12] Kumpf, Smart Cars, S. 19–22; vgl. auch OECD, DDI, S. 141.

[13] OECD, DDI, S. 139–140.

[14] Erwartet werden für 2020 ca. 2, 87 Milliarden Smartphones weltweit, https://www.emarketer.com/Article/Slowing-Growth-Ahead-Worldwide-Internet-Audience/1014045 (geprüft am 07.05.2019); Ericssons Vorstandsvorsitzender sah voraus, dass 2020 ca. 50 Milliarden Geräte gleichzeitig verbunden sein werden, das entspricht 6 Geräten für jeden Erdbewohner in 2020, siehe Ericsson, CEO to shareholders: 50 billion connections 2020, 13.04.2010 (www.ericsson.com/en/press-releases/2010/4/ceo-to-shareholders-50-billion-connections-2020) (geprüft am 07.05.2019).

[15] Vgl. Drexl, NZKart 2017 (339).

[16] https://www.dekra.net/de/adac-meldet-stau-rekord/ (geprüft am 07.05.2019)

[17] Vgl. Friedrich, in: Maurer/Lenz/Winner u.a. (Hrsg.), Autonomous Driving: Technical, Legal and Social Aspects, 2016, S. 317 (S. 331 f.); Kumpf, Smart Cars, S. 19–22.

[18] Proff/Fojcik, Mobilität und Digitale Transformation, 2018, S. 289 ff.; Ukkusuri/Yang (Hrsg.), Transportation Analytics in the Era of Big Data, 2019.

[19] Holzinger/Röcker/Ziefle, Smart Health, 2015.

[20] Alba/Chicano/Luque, Smart Cities, 2017.

[21] Schönfeld/Heil/Bittner, in: Hoeren/Kolany-Raiser (Hrsg.), Big Data in Context: Legal, Social and Technological Insights, 2018, S. 109 ff.

[22] Grünewald-Schukalla/Ahlers/Lücke u. a. (Hrsg.), Big Data und Musik, 2018.

[23] Steven, Industrie 4.0, 2019, S. 13 ff.; Picot/Berchtold/Neuburger, in: Kolany-Raiser/Heil/Orwat u.a. (Hrsg.), Big Data und Gesellschaft, 2018, S. 309 (S. 333 ff.); Noerr LLP/Bundesverband der Deutschen Industrie e. V., Digitalisierte Wirtschaft/ Industrie 4.0, November 2015OECD, DDI, S. 28 mit Verweis auf Jasperneite, Was hinter Begriffen wie Industrie 4.0 steckt, 2012 (www.computer-automation.de/steuerungsebene/steuern-%20regeln/artikel/93559/0/) (geprüft am 02.05.2019).

[24] OECD, DDI, S. 27–28; vgl. für zahlreiche Optimierungsbeispiele BITKOM, Big Data und Geschäftsmodell- Innovationen in der Praxis: 40+ Beispiele, 2015.

[25] Roy, Industrie 4.0 – Gestaltung cyber-physischer Logistiksysteme zur Unterstützung des Logistikmanagements in der Smart Factory, S. 57 ff.

[26] Sadowski, Big Data & Society 6 (2019), 1-12.

[27] Beachte aber SteinmüllerInformationstechnologie und Gesellschaft1993,  S. 212. Eine völlig isolierte Betrachtung von Daten ist nicht möglich.

[28]  Smith, The hidden hand of data bias, 2018 (www.infoworld.com/article/3269060/the-hidden-hand-of-data-bias.html) (geprüft am 02.05.2019); Morgan, 7 Common Biases That Skew Big Data Results, 2015 (www.informationweek.com/big-data/big-data-analytics/7-common-biases-that-skew-big-data-results/d/d-id/1321211?image_number=3) (geprüft am 02.05.2019); siehe zur mgl. Lösung eines sog. Data Bias https://www.research.ibm.com/5-in-5/ai-and-bias/ (geprüft am 07.05.2019).

[29] Siehe auch Sarkar, What lies beneath? Optimization at the heart of Machine Learning, 2018 (https://towardsdatascience.com/a-quick-overview-of-optimization-models-for-machine-learning-and-statistics-38e3a7d13138) (geprüft am 07.05.2019).

[30] Picot/Berchtold/Neuburger, in: Kolany-Raiser/Heil/Orwat u.a. (Hrsg.), Big Data und Gesellschaft, 2018, S. 309 (322).

[31] McKinsey Global Institute, The Age of Analytics: Competing in a Data-Driven World, 2016, S. 29.

[32] Grundlegend dazu mit mathematischer Herleitung Samuelson, review of economics and statistics, 36 (1954), 387–389 (https://www.jstor.org/stable/1925895?seq=1#metadata_info_tab_contents ) (geprüft am 02.05.2019).

, ,

NEU in Münster: Das Legal Innovation Meetup

Gestern ist ein weiterer Stein ins Rollen gekommen! Denn nun gibt es in Münster ein neues Meetup, das sich mit den Zukunftsthemen in der Rechtsbranche beschäftigt. Weiterlesen

, ,

Legal Innovation Talk #1 08.05.2019

Nachdem im Januar bereits unser Kick Off-Event großen Anklang gefunden hatte, ging am 08.05.2019 der Legal Innovation Talk in die erste Runde. Thema des Abends war Künstliche Intelligenz im Recht. Rund 80 Gäste hatten sich aus diesem Anlass im großen Gerichtssaal des Heereman‘schen Hofs in Münster versammelt, der bis auf den letzten Platz besetzt war. Der historisch bedeutsame Renaissancebau, der als alter Adelshof auf das 16. Jahrhundert zurückgeht, bot eine beeindruckende Kulisse für einen interdisziplinären Blick auf die Zukunft des Rechts.

Erster Speaker war Marcus Cramer, Head of Analytics beim Westphalia Datalab und selbst Mitglied bei recode.law. Er gab uns eine Einführung in das Thema Artificial Intelligence und Machine Learning. Zunächst ging es um die Frage, wie man KI überhaupt definieren könnte und welche philosophischen Fragestellungen sich dahinter verbergen. Marcus erläuterte dabei nicht nur die traditionelle Unterscheidung zwischen schwacher und starker KI, sondern stellte auch die wesentlichen Meilensteine in der Entwicklung dieser Technologie dar. Dabei wies er auf das Phänomen hin, dass mit zunehmendem Fortschritt immer mehr Bereiche der schwachen KI zugeordnet würden, die vor ihrer Realisierung noch als starke KI gehandelt worden seien.

Anschließend erläuterte Marcus die Funktionsweise eines Entscheidungsbaums anhand eines juristischen Beispiels. Ausgangspunkt hierfür war ein Datensatz über die Hinrichtung von Häftlingen in den USA. Dieser enthielt verschiedenste Informationen über die Personen selbst und darüber, ob sie den ihnen zustehenden Rechtsweg erschöpft hatten oder nicht. Anhand dieser Daten galt es, einen Decision Tree zu entwickeln, der möglichst akkurate Vorhersagen über die zu erwartende Rechtswegerschöpfung zukünftiger Häftlinge treffen sollte. Anschließend schilderte Marcus weitere Anwendungsbeispiele von KI in verschiedensten gesellschaftlichen Bereichen. Dies führte zu der Frage, welche Berufe zukünftig durch KI ersetzt werden könnten. Bei juristischen Tätigkeiten ergab sich diesbezüglich ein geteiltes Bild.

Insgesamt hat es Marcus geschafft, die komplexe Thematik der KI auf ihre Grundzüge zu konzentrieren und auch Zuhörern ohne besondere technische Vorkenntnisse näher zu bringen. So schuf er eine ideale Diskussionsgrundlage für die anstehende Pause. Bei Bagels von Teilchen & Beschleuniger und Getränken von der Finne Brauerei diskutierte das bunt gemischte Publikum angeregt über den ersten Vortrag des Abends.

Nach der Pause ging es weiter mit der Präsentation von Tianyu Yuan. Er ist Founder und Executive Director von LEX superior und berichtete uns aus erster Hand über die praktischen Anwendungsmöglichkeiten von Machine Learning im Rechtswesen. Zunächst nutzte Tianyu aber die Gelegenheit, um die Zuhörer über den Einsatz von Technologie im Jurastudium zu befragen. Anschließend wandte er sich dem Machine Learning aus juristischer Perspektive zu. Tianyu argumentierte, dass selbst bei einer Automatisierung der juristischen Entscheidungsfindung die Erfassung des Sachverhalts nach wie vor eine rechtliche Wertung verlange. Ohne Subsumtion existiere schlicht kein Sachverhalt. Zudem problematisierte er, dass die Rechtsfindung eben nicht immer logisch sei.

Um die Komplexität juristischer Subsumtion zu verdeutlichen, zeigte Tianyu die Schwierigkeiten auf, die bereits bei vermeintlich einfachen Rechtsbegriffen wie „Körperverletzung“ oder „Sache“ auftreten. Eine Automatisierung der Subsumtion durch Machine Learning in Form von supervised, unsupervised oder reinforcement learning sei zwar bis zu einem gewissen Grad möglich, aber mit einem extrem hohen Aufwand verbunden. Zudem müsste ein solches System laufend aktualisiert werden. Ein weiteres Problem sah Tianyu in der potenziell diskriminierenden Wirkung von KI, dem sog. algorithm bias. Hier müsse man sich zwangsläufig die Frage stellen, ob man wirklich sämtliche Entscheidungen den Algorithmen überlassen möchte.

Nach dieser rechtlichen Perspektive folgte eine gemeinsame Diskussion von Marcus und Tianyu mit dem Publikum. Diese entwickelte sich in manchen Teilen sogar in ein richtiges Streitgespräch. Es ging insbesondere um Möglichkeiten, wie man zukünftig auch die Sachverhaltserfassung (z.B. nach einem Verkehrsunfall) mittels Sensoren automatisieren könnte. Zudem wurden die existierenden Prognosen bezüglich der Entwicklung einer starken KI kritisch hinterfragt.

Damit war der offizielle Teil des Abends beendet. Es folgte ein lockerer Austausch zwischen den Gästen über die zuvor aufgeworfenen Probleme. So diskutierten die anwesenden Juristen, Informatiker und weiteren Interessierten noch bis in die späten Abendstunden über die Herausforderungen der Künstlichen Intelligenz für das Rechtswesen. Dieser interdisziplinäre Austausch hat uns nachhaltig beeindruckt.

Unser besonderer Dank gilt an dieser Stelle unseren Sponsoren Noerr und Baker McKenzie, die auch an diesem Abend mit mehreren Anwälten vor Ort mitdiskutiert haben. Und schließlich bedanken wir uns bei den beiden hervorragenden Speakern Marcus und Tianyu. Wir freuen uns über die zahlreichen Themenvorschläge für zukünftige Veranstaltungen und arbeiten bereits fleißig an deren Umsetzung. Das durchweg positive Feedback bestärkt uns auf diesem Weg!

Autor: Leonhard Weitz

,

recode.law Neumitgliederevent – Auf zu neuen Ufern!

Die Vision steht fest und auch das Team formt sich stetig weiter. Nachdem wir im Januar im Anschluss an unser Kick-Off-Event eine allgemein offene Bewerbungsphase gestartet hatten, in persönlichen Gesprächen die Bewerber besser kennenlernen konnten und letztlich entschieden haben, mit wem wir unsere Reise fortsetzen wollen, war es endlich soweit:

Am 13.04. durften wir knapp 20 neue Mitglieder in unseren Reihen begrüßen. Getroffen haben wir uns im Co-Working-Space Harbourside in Münsters wunderschönem Hafen.

 

Angesetzt war für das Meeting nicht nur ein Kennenlernen, sondern sollten die Neumitglieder auch direkt in die aktive Vereinsarbeit eingebunden werden. Nach einer kurzen Einführung zur Organisation und zu den Zielen des Vereins wurden dann in Gruppen, geleitet von den Vorstandsmitgliedern einige neue Projekte angepackt. Während eine Gruppe das Marketingkonzept des Vereins überdachte und neue Ideen formulierte, widmete sich die andere Arbeitsgruppe der Planung von zwei Events in den anstehenden Semestern.

Danach ging es mit versammelter Mannschaft ins Culteck zum Kegeln. Obwohl wir bei der Bedienung des Scoreboards nicht ganz unserem “digital first”-Mantra nachkamen, hatten wir doch einen lustigen und amüsanten Abend, bei dem wir uns alle besser kennenlernen konnten. Das ein oder andere Naturtalent wurde entdeckt, doch im Allgemeinen besteht wohl noch Nachholbedarf bei diesem altehrwürdigen “Soft-Skill”.

 

 

 

Wir bedanken uns bei allen Anwesenden und sind gespannt, was die Zusammenarbeit persönlich und auch für unser gemeinsames Ziel bringt.

Wir freuen uns drauf!